top of page

Optimization of Titanium Dental Mesh Surfaces

A scientific article on the Optimization of Titanium Dental Mesh Surfaces for Biological Sealing and Preventing Bacterial Colonization for Materials Magazine.

Abstract: Titanium dental meshes have a wide application in order to ensure the retention of calcium phosphate-based biomaterials to regenerate bone tissue. These meshes are temporary and must grow a soft tissue to prevent bacterial colonization and provide stability. In this work, we aimed to optimize the roughness of the meshes to obtain a good biological seal while maintaining a behavior that did not favor bacterial colonization. To this end, six types of surfaces were studied: machined as a control, polished, sandblasted with three different alumina sizes and sintered. The roughness, contact angles and biological behavior of the samples using fibroblast cultures at 7, 24 and 72 h were determined as well as cytotoxicity studies. Cultures of two very common bacterial strains in the oral cavity were also carried out: Streptococcus sanguinis and Lactobacillus salivarius. The results showed that the samples treated with alumina particles by sandblasting at 200 micrometers were the ones that performed best with fibroblasts and also with the number of bacterial colonies in both strains. According to the results, we see in this treatment a candidate for the surface treatment of dental meshes with an excellent performance.

Read the full article.


Paper_Mesh_BoneEasy_Nuno cruz_Inês_revista Materials 2022
Download PDF • 2.47MB

89 views0 comments


bottom of page